Imputation of Missing Values in Economic and Financial Time Series Data Using Five Principal Component Analysis (PCA) Approaches

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Using Principal Component Analysis (pca) to Obtain Auxiliary Variables for Missing Data in Large Data Sets

......................................................................................................................................... iii Acknowledgement ......................................................................................................................... iv Table of

متن کامل

Practical Approaches to Principal Component Analysis in the Presence of Missing Values

Principal component analysis (PCA) is a classical data analysis technique that finds linear transformations of data that retain the maximal amount of variance. We study a case where some of the data values are missing, and show that this problem has many features which are usually associated with nonlinear models, such as overfitting and bad locally optimal solutions. A probabilistic formulatio...

متن کامل

Principal Component Analysis of Process Datasets with Missing Values

Datasets with missing values arising from causes such as sensor failure, inconsistent sampling rates, and merging data from different systems are common in the process industry. Methods for handling missing data typically operate during data pre-processing, but can also occur during model building. This article considers missing data within the context of principal component analysis (PCA), whi...

متن کامل

Resampling Time Series Using Missing Values Techniques

Abst rac t . Several techniques for resampling dependent data have already been proposed. In this paper we use missing values techniques to modify the moving blocks jackknife and bootstrap. More specifically, we consider the blocks of deleted observations in the blockwise jackknife as missing data which are recovered by missing values estimates incorporating the observation dependence structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Central Bank of Nigeria Journal of Applied Statistics

سال: 2019

ISSN: 2476-8472,2141-9272

DOI: 10.33429/cjas.10119.3/6